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I.  INTRODUCTION 

Triaminoguanidlum nitrate (TAGN) is of interest for a variety of RDX- 
based propellant applications such as low vulnerability (LOVA) propellant 
materials, gas generators and very high burning rate formulation.  Its 
advantages include low molecular weight gas products and therefore low flame 
temperatures, as well as an increased muzzle velocity and impetus.  Several 
reports have been published in which these advantages have been realized in 
ballistic measurements.^"'^  However, one critical disadvantage is the 
instability of TAGN, both alone and in propellant formulations.  Colored 
(particularly pink) crystals of TAGN are commonly formed in the synthesis, 
storage and/or processing of TAGN.  Care must be taken to avoid metal ion 
contamination and to ensure prompt solvent removal (particularly ethyl 
acetate, acetone, alcohols and those which are basic).  However, even when 
such precautions are taken, the resultant TAGN often becomes discolored and 
problems with the propellants made from it are likely.  In this laboratory 
differences in the physical appearance of propellants synthesized from pure 
TAGN versus an impure, pink TAGN were seen; a decrease in ballistic properties 
was also observed.^  It has also been found that the addition of NC to 
propellant formulations can reduce the stability of TAGN propellants and that 
the presence of a stabilizer such as ascardite can minimize the loss of 
stability in NC/TAGN formulations.^ 

The purpose of this research was to study the decomposition of TAGN 
alone, as well as its effect on the family of cellulose acetate polymers. 
LOVA propellants consisting of cellulose acetate, RDX and TAGN have been 
produced and studied at ICT; therefore, the stability and compatibility of 
these propellant materials is of interest. 

II.  EXPERIMENTAL 

TAGN was studied at temperatures below its deflagration point (227°C), 
both alone or in cellulose acetate mixtures using mass spectroscopy (MS).  The 
sample was thermally decomposed in a controlled temperature bath and was 
connected to the MS vacuum chamber via a heated transfer line and valve.  The 
evolved gases were quantitatively measured as a function of temperature while 
the non-volatile residue was analyzed by methods described below.  The sample 
was placed in the bath at 150°C and heated at approximately 10°C/min to its 
final temperature, nominally between 190-220°C.  The sample was held at the 
final temperature for 15 min and the gases collected in the vacuum chamber; 
after that time the high resolution mass spectrum was obtained.  The 
temperature of the transfer lines and vacuum chamber were kept high enough so 
that species such as NH3 and acetic acid did not condense. 

Infrared spectra were obtained using a 20SX Nicolet Fourier transform 
infrared (FTIR) spectrometer with MCT detector.  One hundred scans at 
nominally two wavenumber resolution were signal averaged.  A Perkin Elmer 300 
series atomic absorption spectrometer was used for the determination of 
metals.  The standard conditions suggested in the instrument manual were used 
for the selection of source lamp, flame gas and detection wavelength.  Under 
these conditions, detection limits (in ppm) were as follows:  Fe (0.005), Cu 
(0.1), Ni (0.004), Zn (0.001), Cd (0.001), Cr (0.001). 



Differential scanning calorlmetry (DSC) was performed at a heating rate 
of 10°C/min using a Mettler 3000 Thermal Analysis system.  Nominal 3 mg 
samples were place into 4 mm diameter pans with crimped lids and a vent 
hole.  The flow rate of gas over the sample was nominally 20 cc/min,  TAGN and 
its decomposition products were determined qualitatively by thin layer 
chromatography (TLC).  The best conditions found for their separation were 
silica TLC plates with acetone:  20% NH^OH (98:2) as the eluting solvent. 

III.  THERMAL DEC0f4P0SITI0N/MASS SPECTROMETRIC ANALYSIS 

The results for TAGN over the temperature range 190-220°C were rather 
similar, with ammonia (35-45%) and nitrogen (50-65%) as the chief products 
(Table 1).  Other gases found in small amounts Include CO (<2%) , formaldehyde 
(<4%), NO (<1%), and possibly hydrazine (<2%).  N^O was found in small amounts 
(<1%), usually only at the higher temperatures (210-220°C), or if prolonged 
(30-60 min) heating periods were used.  Unfortunately, no difference was seen 
between the gases evolved from the pink and pure TAGN.    , ^    : 

Table 1.  Mass Spectrometric Analysis of the Gaseous Decomposition 
Products of TAGN Alone and Mixtures with Cellulose Acetate Binders 

CO      CO2      H2C=0    NO    N2O NH3 _N2_ 

TAGN 35. 58. 

CA_ 

TAGN/ CA 3.8 58.8 
75^25 

TAGN/CAB 17.9 62.4 

<2        <4      <1       

100.     ■ '  ''  

3.6     16.7       5.6 10.6 

1.3     5.8       2.0 3.0 

Note:  HnO was not included in the above analyses. 
Decomposition temperature was 210-220°C. 
Values are in mole percent. . 

Since the interaction between TAGN and cellulosic binders is of interest, 
a mixture of TAGN:CA was also studied in the MS under the conditions mentioned 
above.  Cellulose acetate (CA) alone yielded no permanent gases at 
temperatures up to 220°C; only acetic acid was formed.  However, the 1:1 by 
weight mixture yielded almost no NHo or acetic acid, but gave copious amounts 
of N2O.  Mixtures of TAGN with cellulose acetate butyrate (CAB) demonstrated 
the same effects; N2O was observed in these mixtures as well.  The NHo 
concentration in the mixture was lower than in the TAGN sample alone as 
well.  The effect of N2O production and decreased NHo level is less with CAB , 
than with CA, presumably due to the lower acetate substitution in the CAB. 

Although it was suspected that the NHo produced from TAGN might react 
with CA, it was surprising to find that so much ammonia was consumed (assuming 
that is was formed, as in TAGN alone) and that such a large quantity of N2O 
was produced.  In an attempt to determine what reactions might be involved in 



the N2O production, a mixture of TAGN and underivatized cellulose (no acetate 
groups present) was decomposed in the same manner.  The gases evolved 
consisted chiefly of ammonia and nitrogen, similar to the case of TAGN 
alone.  Thus, it appears that the acetate groups are critical in the 
interaction between TAGN and CA in which N2O is produced in the CAB. 

Further experiments were performed to determine if ammonia alone is 
sufficient to react with cellulose acetate and produce NoO.  An ammonium salt 
(NHAHCOO, which volatilizes at the 210°C  used in these thermal decomposition 
to yield NHo and CO2) was mixed with cellulose acetate and treated as above. 
No NoO was obtained.  Conversely, a mixture of TAGN and acetic acid was 
prepared to determine if acetic acid is sufficient to react with TAGN and 
cause the formation of NoO.  Again, none was seen, the chief products being 
those of the individual components alone. , 

From these results we can conclude that the acetate functional group of 
cellulose acetate is essential for the reaction with TAGN to produce N^O.  It 
is not yet certain in what manner the TAGN molecule reacts with CA in this 
decomposition.  Further experiments are planned to determine this as well as 
whether the reactions occur in the gas or condensed phases. 

IV.  FTIR RESULTS      ' 

The infrared experiments were performed (a) in order to characterize the 
solid residue from the TAGN decomposition-MS experiments and (b) to determine 
any difference in a pure sample of TAGN and a batch of pink TAGN which was 
prepared at ICT.  By analyzing both the solid and gaseous products from the MS 
thermal treatment, the decomposition mechanism of TAGN under the conditions 
used could be better elucidated. 

TAGN samples were heated for MS decomposition studies as described 
above.  Since NH3 is the chief decomposition gas it was quite logical to 
suspect that the less substituted guanidine nitrates might be formed in the 
decomposition of TAGN.  Thus, the spectra of diaminoguantdine nitrate (DAGN), 
aminoguanidine nitrate (AGN), and guanidine nitrate (GN) as well as TAGN were 
obtained as reference compounds.  These are shown In Figure 1 and the 
absorption frequencies and assignments of the major bands are shown in Table 
2.  The infrared spectra and band assignments for TAGN had previously been 
reported by Brill.   Some features of the reference spectra are worth 
noting.  As the NH groups are removed from TAGN, the bands due to NH 
asymmetric stretch begin to broaden.  The C-N band at 1685 in TAGN (with 
partial double bond character) shifts to lower frequency with fewer NH groups. 

The N-N band of medium intensity at 1129 cm~^ in the TAGN spectrum has a 
significantly lower relative intensity in DAGN and is barely discernable in 
AGN.  This is expected, based on the structure of these compounds.  The N-N 
band is fairly weak, even in TAGN which has three N-N bonds.  DAGN has one 
less N-N bond and the band is weaker than in TAGN.  In AGN (only one N-N bond) 
the band is barely discernable.  The other prominent bands in TAGN are the 
nitrate bands,^the strongest of which is at 1384 cm~^ and a small but sharp 
band at 825 cm  .  These bands were identified from a pure sample of KNO3 and 
appear to be stronger in the decomposition products, relative to TAGN. 
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Three samples were chosen from the MS experiments for analysis by IR, to 
determine what differences might be seen relative to the pure TAGN.  Two 
samples were solid residues, obtained by heating TAGN at 210°C and 220°C for 
15 minutes.  The third sample consisted of a powder which was initially only 
slightly off-white in color and which was found condensed on the side of a 
glass tube in a small area where the glass was not completely wrapped with 
heating tape.  This condensed material was removed from the tube 
(inadvertantly with a metal spatula) and saved in a glass vial.  Two days 
later it was noticed that the material was brilliant red and was therefore of 
significant interest.  The infrared spectra of this material is shown in 
Figure 2, along with that of DAGN; the similarity is striking and shows that 
the condensate consists chiefly of DAGN.  The pink color is due either to an 
impurity or decomposition product; pure DAGN is a white crystalline material. 

The solid decomposition residues are not so easily Identified although 
trends in their spectra suggest general changes in the structure of the 
TAGN.  The TAGN heated to 210 was originally light pink and yielded a gummy 
residue which was medium pink and whose spectrum is seen in Figure 3.  A pure 
sample of TAGN was heated to 220°C and yielded a residue of similar texture to 
that at 220°C, but was only light pink in color.  The absence of the N-N band 
suggest that most of these bonds have been broken; the broad and featureless 
NH bands also indicate increased decomposition.  The residue probably consists 
of a mixture of products and thus, identification is difficult.  However, it 
appears likely that TAGN forms such compounds in its early decomposition. 

Table 2.  Major Infrared Absorption Band Assignments for the Tri- 
Mono-Amino and Unsubstituted Guanidine Nitrates 

Di-, 

IR 

Sample; 

NHn N-C-N N-N 

TAGN 
DAGN 
AGN 
GN 

3214-3319 
3216-3353 
3263-3452 
3202-3448 

1685 1129 
1682 1127 

671/1657 1120 
1666   

Heated: 

Red Condensate 
TAGN Residue (210°C) 
TAGN Residue (220°C) 

3213-3319 
3215-3307 
3157-3385 

1684 
1660 
1654 

1128 

1130 

IJnheated: 

Red Crystals from 
Recrystall. Solvent 

Pink TAGN 
3212-3319 
3213-3343 

1685 
1685 

1128 
1128 

Note: :  The nitrate bands have the same frequency for each sample and 
at 1385 cm ^ and 825 cm"^. 

are 
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The next set of IR samples were analyzed to determine if any difference 
in the spectra of pink or pure TAGN samples could he determined. Previous 
researchers had detected no differences but it was decided to try again. A 
medium pink sample of TAGN (the pinkest available) was chosen, but was still 
damp from the mother liquor.  Unfortunately, when this sample was dried for IR 
analysis, most of the pink color was also removed.  A similar effect had also 
been previously reported.   The spectrum was similar to that of TAGN and is 
not shown. 

It was known that the pink crystals can be washed with deionized water 
and the pink color removed.  TAGN crystals appear as hollow cylinders when 
viewed under a microscope.  It is believed that much of the pink color is due 
to liquid trapped in the hollow spaces of the cylinder."  At ICT researchers 
had also prepared a sample of crystals which, when washed, turned the 
deionized water a pink-orange color.  This wash-water was collected and 
concentrated (under vacuum-no heat) for IR analysis.  In the first attempt the 
sample was extracted into methylene chloride (which then turned pink) and 
evaporated to dryness.  However,, the resulting crystals were white and the 
spectrum was identical to TAGN (not shown). 

Another attempt was made using this recrystallization liquor in which the 
water was again removed under vacuum without heat.  After several hours under 
vacuum the solution remained clear, but turned a beautiful red color.  The 
water was completely evaporated and the resulting crystals were run as KBr 
pellets and the results are shown in Figure 4a.  The only difference between 
this and the TAGN spectra (Figure 4b) is the stronger nitrate band of the 
former. This might suggest that the sample becomes enriched in nitrate.  If 
so, unlike the decomposition spectra discussed above, the larger nitrate band 
is not accompanied by any change in the TAG (triaminoguanidine) portion of the 
molecule; the band positions are similar to those of TAGN (Table 1).  Thus, 
the pink color could be due to some nitrate complex (possibly a metal nitrate) 
present in TAGN which, except for the nitrate band, does not absorb 
significatly in the IR. ;> . 

Previous researchers have speculated that the pink color is due to the 
formation of conjugated double-bonded complexes which form from TAGN after the 
loss of nitrate, and that the latter is washed away in the recrystallization 
fluid.°  However, the nitrate band in the spectra of the pink and red crystals 
described above does not support this.  Also, if such conjugated TAG-like 
complexes did form, they would expect to be at least weakly IR absorbing, 
being C=N and N=N type bands.  Thus, in such deeply red crystals as used in 
this experiment one might expect to see at least minor changes in the IR 
spectrum.  None were observed, except for the nitrate band intensity, as 
indicated above.  Whether the stronger nitrate band is due to an increased 
concentration of nitrate or simply to crystal effects is not yet known. 

V.  ATOMIC ABSORPTION ANALYSIS 

Since it seemed possible that the pink (red) color of some the samples 
might be related to the presence of metal, atomic absorption spectroscopy 
(AAS) analyses were run on several of the samples. 

The metals determined were those which are most common:  Fe, Cu, Ni, Zn, 
Cd and Cr.  The level of all of these was below their detection limits.  The 
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likelihood of contact of the sample with any other metal is slim and thus, it 
seems doubtful that any residual metal complex impurity was the cause of the 
pink color. .1 :. 

4 000       3300 2600       1900 
NRVENUMBER ( 

1200 500 
-1. cm  ) 

Figure 4.  The Infrared Spectra of:  (a) Deep Red Crystals Obtained by 
Vacuum Drying the Recrystallization Water and (b) TAGN 
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i :      VI.  C, H, N, AND 0 ANALYSIS   c  .-:';. v: .■■:   ;>.,■'./.., 

Elemental analysis was performed on duplicate samples of pure TAGN, pink 
TAGN and crystals which formed from the recrystallization solvent (all samples 
were dryed under vacuum to ensure that any residual solvent was removed). 
Samples of the residue obtained by heating TAGN to 210 or 220°C for 15 min 
were also analyzed.  Duplicate samples of the pure TAGN residue were prepared. 
Single samples of pink TAGN and pink TAGN which had been washed until it 
became white were also analyzed, as well as a single sample of the red-colored 
material which had condensed on the walls of the test tube while heating a 
pure sample.  The results of these analyses are shown in Tables 3 and 4.  In 
the case of the duplicated samples the average of the two results and the 
standard deviation is given (Table 2).  The delta (u) value is the difference 
between the theoretcial value for TAGN and the analytical value; the % value 
is the % change from the theoretical values for a sample of pure TAGN (Table 
4).  For the pure TAGN sample A gives an estimate of the accuracy of the 
analysis.  It can be seen that the C and H values are more accurate than are 
those of nitrogen; those of oxygen are obtained by subtracting the sum of the 
others from 100 and are the least accurate.  Results for nitrogen with the 
instrument used in this work are consistently less accurate then for carbon or 

10 hydrogen.   Whether this accounts for the discrepancy between the theoretical 
and unheated, pure TAGN in Table 4 is unclear.  Thus, there may be some minor 
impurity/decomposition within the parent material. 

Unfortunately, no significant difference was seen between either the pink 
TAGN crystals or the crystals obtained from the recrystallization fluid. 
However, the latter were only very slightly pink and are not the brilliant red 
crystals on which the IR analysis was made. 

The results for the decomposition residue and, to a lesser extent, the 
candensate show that these samples are enriched in C and Go and have less Ho 
and N2 present, relative to TAGN.  This is in agreement with the MS results 
which have indicated that the chief products are No and NHo, and that there 
are copious amounts of both formed.  Other gases (containing C and Go) are 
found in only small quantities at high temperature and/or longer heating 
durations. Since the only source of oxygen in the TAGN molecule is the HNO-i   ; 
group, the enrichment of O2 supports the IR result (formation of DAGN and AGN 
as the sample decomposes) that decomposed samples are enriched in nitrate. 
Any enrichment of nitrogen due to the nitrate is negated by the large loss of ; 
N2 and NH^ and thus the percent nitrogen in the decomposed samples is lower 
than that of TAGN.  It should be noted here again that the condensate and pink' 
TAGN were only pale pink in color and were not the samples for which the IR 
results were obtained. 

:        VII.  DIFFERENTIAL SCANNING CALORIMETRY      .--       ; ■' 

In the DSC at 10°C/min, the exothermic decomposition of TAGN begins 
immediately after the melting point and reaches its maximum at about 232°C 
(Figure 5).  A second, slightly sharper exotherm is observed at 278°C, with a 
smaller and more variable exotherm (265°C) occurring between the 2 larger 
exotherms.  The first exotherm (just after the me.lting point) is the one 
associated with the reactions studied in the mass spectrometer (mainly N2 and 
NHo evolution).  This is evidenced by the fact that when the residue from the 
MS experiments is run in the DSC, the first exotherm:normally seen in TAGN is 
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not present in the curve for the residue (Figure 6), and only the second major 
exotherm is seen.  In addition, this second peak occurs at the same 
temperature as that found when DAGN is decomposed in the DSC (Figure 6b). 
This lends further support to the MS, FTIR and elemental analyses that DAGN is 
formed from mild decomposition of TAGN. 

Table 3.  Elemental Analysis of TAGN and the Residue/Condensate from 
the MS Experiments; the Theoretical Value for Pure/Undecomposed TAGN 

is Given as a Reference 

Sample 
H N 0 

100-(C+N+H) 

TAGN (Theoretical) 

Unheated: 

7.18 5.42 58.64 28.73 

TAGN (Pure) 7.11 ± .05 
A = - 0.07 

5.45 ± .01 
A = 0.03 

55.75 ± .89 
A = - 2.89 

31.69 ± .83 
A = - 2.96 

TAGN (Pink) 7.20 ± .02 
A = 0.02 

5.46 ± .03 
A = 0.04 

55.44 ± .82 
A = - 3.20 

31.88 ± .85 
A = 3.15 

Crystals from 
Recrystallization 
Solvent 7.14 ± .01 

A = - 0.04 
5.51 ± .01 

A = 0.09 
55.77 ± .71 
A = - 2.87 

31.57 ± .71 
A = 2.84 

Heated: 

Pure TAGN 
Residue 9.63 ±   .20 

A   =   2.45 
4.89 ±   .02 
A   =  -   0.50 

42.88 ±   .57 
A  = -   16.33 

42.59 ±   .38 
A =   13.86 

Washed Pink 
TAGN Residue 9 .78 

A = 36.20 
4.51 
A = - 0.91 

41.49 
A = - 17 .15 

44.22 
A = 15.49 

Pink TAGN 
Residue 11.99 

A   =  4.80 
4.40 
A   =  -   1 .02 

45.00 
A  = -   13.64 

38.61 
A =  9.88 

Condensate from 
Pure TAGN 8.83 

A = 1.65 
4.94 
A = - 0.48 

49.84 
A = - 8.80 

36.39 
A = 7.66 

Note:  Values with error bars are the average of two measurements. 
Delta (A) represents the difference between the experimental and 
theoretical values. 
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b) DAGN 

a) TAGN decomposed (220 C) 
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Figure 6.  Differential Scanning Calorlmetry Analysis of (a) the Solid 
Decomposition Residue of TAGN and (b) DAGN 
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Table 4 .  Percent Change in Elemental Analysis from the Theoretical 
Values for TAGN. A positive sign indicates a value greater than the 

theoretical; a negative value indicate a value less than the theoretical. 

Sample H N 

TAGN (Theoretical) 7.18        5.42       58.64 

Percent Difference from Theoretical Value: 

Unheated: 

28.73 

TAGN (Pure) 

TAGN (Pink) 

Crystals from 
Recrystallization Solvent 

Heated: 

-0.9 

0.2 

-0.5 

0.5 

0.7 

1.6 

4.9 

5.4 

-4.9 

-10.3 

10.9 

9.8 

+34.1 -9 .8 -27.8 +48. 

+36.2 -16.8 -17.2 +54.9 

+66 .8 -18.8 -23.2 +34.1 

+22.9 -8.8 -15.0 +26.6 

Pure TAGN Residue 

Washed Pink TAGN Residue 

Pink TAGN Residue 

Condensate 

TAGN and RDX alone give what might be described as a "controlled 
reaction" (peaks are roughly Gaussian in shape) and occur over a range of 
several minutes.  In the case of RDX (Figure 7) the exothermic reaction begins 
just after melting (at about 210) and peaks at about 235°C.  However, when 
TAGN is mixed with RDX the exotherm begins at about 210 and reaches its 
maximum almost immediately so that the curve resembles a spike more than a 
peak.  The DSC of TAGN alone is shown again as a reference for which to 
compare temperature shifts.  This result had previously been observed in 
another laboratory using a different model of DSC.    Since variations in 
design (different sample containers, variations in purge flow over sample, 
etc.) can result in differences in pressure and atmosphere composition of the 
sample surroundings, results on this DSC were obtained for comparison. 

The MS results indicate that the initial decomposition at mild 
temperatures (190-220°C) is due to evolution of NHo and No and not to loss of 
HNO^.  The enrichment of C and O2 in the residue (and corresponding loss of No 
and Ho) as well as the increase in nitrate bands in the residue as seen by IR 
support this.  It is interesting to note that the residue is typically a light 
to medium pink color (the pink color increasing with the degree of 
decomposition) and that the sublimate was Intensely red.  If these pink 
decomposition products are related to the pink color seen in impure TAGN, then 
these results also do not support the hypotheseis that the impurity in pink 
TAGN forms by initial cleavage and loss of HNOo.  Each of these samples showed 
an enrichment of nitrate. 
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Figure 7.  DSC Analysis of (a) RDX and (b) a 1:1 Mixture of RDX and TAGN 
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VIII.  THIN LAYER CHROMATOGRAPHY 

It is desirable to be able to separate the decomposition products of TAGN 
and a partial separation has recently been achieved.  Preliminary attempts to 
separate the components using normal and both C-18 and amino-substituted 
reverse phase HPLC failed and thus the faster TLC method was used to select 
appropriate conditions for the separation.  Standards used in the separation 
are the same as those used as IR references, namely DAGN, AGN, and GN. 

A chromatogram showing the separation of two decomposition residues and 
the standards is given in Figure 8.  It is seen that TAGN is the least 
retained by the plate, followed by DAGN + AGN; GN travels only a small 
distance with the solvent and is found on the lower portion of the TLC 
plate.  The residue from TAGN thermal decomposition consists of a large amount 
of DAGN, smaller quantities of AGN and TAGN and no detectable GN.  In 
addition, three components (at least) are present which elute between AGN and 
DAGN, one of which is quite streaked, possibly due to a significant difference 
in polarity or functional groups relative to the other samples so that it does 
not chromatograph as nicely as the others.  It is also quite probable that the 
unknown spots are due to components which are intermediate in size between AGN 
and DAGN.  Considering the structure of TAGN, this may indicate that the bonds 
between C and N have been broken in these cases, because if only N-N bonds are 
broken, most probably DAGN, AGN or GN would be formed.  Infrared analysis of 
the spots was attempted.  The material from several runs was pooled and 
extracted and analyzed on a salt plate.  Unfortunately, not enough sample was 
recovered to obtain a spectrum.  Reflectance or microsampling attachments were 
not available but might enable an identification of the sample. 

The TLC results support those from the MS and CHN and 0 analyses, since 
DAGN and AGN shown here to be present in the residue would be formed from 
evolution of NHo and one would expect a relative loss of No and enrichment of 
C.  Also, in the infrared spectra of DAGN and AGN the nitrate band is larger 
relative to the C-N band; their presence or seen in the TLC results supports 
the finding of a larger nitrate band (relative to the C-N band) in the residue 
than in the TAGN. 

IX.  CONCLUSIONS ', '■'■ 

The results of the thermal decomposition of TAGN are as follows: 

1. Measurement of the evolved gases by MS has indicated that TAGN loses 
NHo and No as its early decomposition products. 

2. The MS results were supported by C, H, N, and 0 analysis of the 
residue; it was found to be enriched in carbon and oxygen and showed a loss of 
nitrogen and hydrogen, compared to unheated TAGN. 

3. Infrared analysis indicated that the residue from TAGN heated between 
210 and 220°C is probably a mixture consisting of DAGN and AGN, based on band 
frequencies and relative intensities.  A substance which condensed on the 
walls of the container during heating was Identified as DAGN. 

4. TLC analysis of the TAGN residue also Indicated the presence of DAGN 
and AGN, as well as at least three other unknown products. 
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5.  DSC analysis showed that the NH3 and N2 evolution is the first major 
exothermic reaction in TAGN decomposition. 

In addition, a pink TAGN was investigated.  The FTIR analysis indicated 
that the TAG portion of the molecule had not undergone decomposition and the 
only difference between the pink TAGN and pure TAGN was the greater intensity 
of the nitrate band in the pink sample.  A sample of deep red TAGN crystals 
was prepared and its spectrum was also identical to TAGN with the exception of 
an even greater nitrate band intensity (relative) than was seen in the pink 
species.  The source of this strong nitrate band is under investigation. 

In conclusion, the results of MS, IR, TLC, and elemental analyses agree 
and indicate that TAGN decomposes under the conditions used to yield mainly 
NHo and No and a residue containing DAGN, AGN and other products.  No evidence 
for GN formation was obtained.  DSC results show that the NHo and No evolution 
is the first exothermic step in the decomposition of TAGN.  Pink TAGN is 
possibly related to an enrichment of nitrate. 
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